Density Theorems and Extremal Hypergraph Problems
نویسندگان
چکیده
We present alternative proofs of density versions of some combinatorial partition theorems originally obtained by H. Furstenberg and Y. Katznelson. These proofs are based on an extremal hypergraph result which was recently independently obtained by W. T. Gowers and B. Nagle, V. Rödl, M. Schacht, J. Skokan by extending Szemerédi’s regularity lemma to hypergraphs.
منابع مشابه
Technical Report TR - 2004 - 021 Density Theorems and Extremal Hypergraph Problems
We present alternative proofs of density versions of some combinatorial partition theorems originally obtained by H. Furstenberg and Y. Katznelson. These proofs are based on an extremal hypergraph result which was recently independently obtained by W. T. Gowers and B. Nagle, V. Rödl, M. Schacht, J. Skokan by extending Szemerédi’s Regularity Lemma to hypergraphs.
متن کاملExtremal Hypergraph Problems and the Regularity Method
Szemerédi’s regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, comb...
متن کاملTriple Systems Not Containing a Fano Configuration
Given a 3-uniform hypergraph F , let ex3(n,F) denote the maximum possible size of a 3-uniform hypergraph of order n that does not contain any subhypergraph isomorphic to F . Our terminology follows that of [16] and [10], which are comprehensive survey articles of Turán-type extremal graph and hypergraph problems, respectively. Also see the monograph of Bollobás [2]. There is an extensive litera...
متن کاملStructure and Enumeration Theorems for Hereditary Properties in Finite Relational Languages
Given a finite relational language L, a hereditary L-property is a class of finite Lstructures which is closed under isomorphism and model theoretic substructure. This notion encompasses many objects of study in extremal combinatorics, including (but not limited to) hereditary properties of graphs, hypergraphs, and oriented graphs. In this paper, we generalize certain definitions, tools, and re...
متن کاملOn a Turán Problem in Weakly Quasirandom 3-uniform Hypergraphs
Extremal problems for 3-uniform hypergraphs are known to be very difficult and despite considerable effort the progress has been slow. We suggest a more systematic study of extremal problems in the context of quasirandom hypergraphs. We say that a 3-uniform hypergraph H “ pV,Eq is weakly pd, ηq-quasirandom if for any subset U Ď V the number of hyperedges of H contained in U is in the interval d...
متن کامل